【定期テスト対策】1次関数・関数・グラフ・2元1次方程式・連立方程式【高校入試】

  • このエントリーをはてなブックマークに追加
  • Pocket
  • LINEで送る
   

1次関数について

1次関数は、関数の1種です。

yがxの関数で、yをxの1次式で表せる時にyはxの1次関数です。

公式は、y=ax+b(axはxに比例します、bは定数です)。

ちなみにaとbは、定数です。

1次関数の値の変化は、変化の割合(aです)=yの増加量/xの増加量です。

 

☆1次関数のグラフ☆

1次関数y=ax+bのグラフは、y=axのグラフをy軸の正の方向にbだけ平行に移動させた直線です。

そして傾きがa、切片がbの直線でもあります。

①a>0の場合は、xが増加するとyも増加します(グラフは右上がりです)。

②a<0の場合は、xが増加するとyは減少します(グラフは右下がりです)。



☆1次関数の直線の式の求め方☆

①傾きと1点を通る直線は、y=ax+bに1点の座標のx・yの値を代入してbの値を求めます。

②2点を通る直線は、y=ax+bに2点の座標を代入して連立方程式を解きます。

その後、aとbの値を求めます。

2元1次方程式のグラフについて

2元1次方程式は、2種類の文字が使用されている1次方程式です。

ax+by=cのグラフは、yについて火奥底式で解いて1次関数のグラフを描きます。

y=kのグラフは、点(0、k)を通ってx軸に平行な直線です。

連立方程式の解(x=p、y=qです)は、

直線ax+by=cと直線a①x+b①y=c①の交差の座標(p、q)に等しいです。

 
 
  • このエントリーをはてなブックマークに追加
  • Pocket
  • LINEで送る

Tsubasa Hayashiとつながる


ニュースレター登録

  

この記事を読んだ後に読まれている記事

 

Thank you

検索から探す

カテゴリーから探す

最新コーナー

ニュースレター